输入:一个环形单链表的头结点head和报数的值m。
返回:最后生存下来的节点,且这个节点自己组成环形单向链表,其他节点都删掉。
进阶:如果链表节点数为N,想在时间复杂度O(N)时完成原问题的要求,该如何实现?

阅读更多

线性分类器与非线性分类器的区别及优势

线性分类器:模型是参数的线性函数,分类平面是(超)平面;
非线性分类器:模型分界面可以是曲面或者超平面的组合。
典型的线性分类器有感知机,LDA,逻辑斯特回归,SVM(线性核);
典型的非线性分类器有朴素贝叶斯(有文章说这个本质是线性的,http://dataunion.org/12344.html),kNN,决策树,SVM(非线性核)

阅读更多

userCF和itemCF在实际当中如何使用,提供具体操作,以及它们的优势(推荐系统)

基于用户的协同过滤算法UserCF

基于用户的协同过滤,通过不同用户对物品的评分来评测用户之间的相似性,基于用户间的相似性做出推荐。

阅读更多

为什么要用逻辑回归

逻辑回归主要解决线性可分问题,模型简单,易于理解和实现,很适合用来学习大数据的问题。另外,逻辑回归做在线学习比较容易,处理速度也快。

阅读更多